
of addition and subtraction: join or separate, part-part-whole and compare situations.

Join or separate

When two sets are put together to create a new set - or the reverse where a single set is split into two - are join or separate problems.

Seraphina put 15 tulips and 12 daffodils in an empty vase. How many flowers were in the vase? (Join sets of 15 and 12 to create a new set of 27.)

The next day 10 flowers had died. How many were left? (Separate 10 off from 27)

Children find join or separate problems the easiest to solve as the 'action' of the problem can be directly modelled. For example, you might put out 27 counters to represent the flowers and remove 10 of them. It is then quite a short step to show children that this might be recorded as 27-10

Part-part-whole

Seraphina has 27 flowers in a vase. Fifteen of the flowers are tulips, how many are daffodils.

If it takes 10 minutes to read Mike Askew's article on problem solving, how much time will you save teaching maths this year?

Word problems get a lot of bad press in mathematics education. At best, they are seen as calculations wrapped up in words. Children learn to 'throw' away the context and 'strip out' the calculation. Trouble is, this can lead to nonsense such as children arguing that ' 3 ' must be the answer to the following problem:

If Henry the 8 th had 6 wives, how many wives did Henry the 4th have?

Half the 8 to get 4 , so half the 6 !
Ironically this strategy works most of the time even if you don't understand the problem at all. I have a Chinese textbook for nine year olds. I don't understand a word of

Mandarin, but the numbers are readable and I am confident that the problem involving 25 and 14 is most likely to be a multiplication, while the one with 3007 and 1896 is almost certainly a subtraction.

So are word problems just a hangover from the days when we thought children should be able to work out how long baths took to fill, or how many men were needed to dig holes? Or can they actually help children's understanding of mathematics? I think they can.

Learning from word problems

Word problems can help children's understanding if we think of them as a means of learning about calculation, rather than being introduced after arithmetic skills have been
learned. The 'word' problem has to be treated as a more genuine challenge that children can use informal methods to solve, methods that the teacher can then help them 'craft' into more formal mathematics.

A group of American writers, led by Thomas Carpenter, have done extensive research into the sorts of problems that can provide 'root' situations for formal arithmetic. They've written a slim and easily read book setting out their findings, which I recommend to you if the following summary of their work appeals ${ }^{1}$

Roots of addition and subtraction

Carpenter and colleagues identify three roots

This is a typical part-part-whole problem. The whole and one of the parts are known, and the missing part has to be found. This is harder for children than the problem of putting the flowers into the vase because there is no 'action' in the story to model. Helping children model the 15 tulips with, say, counters and then counting on until 27 is reached takes skilful teacher intervention. Recording the problem as $15+[$] $=27$ and modelling the solution on a number line helps to develop understanding.

